The Generalized Baues Problem
نویسنده
چکیده
We survey the generalized Baues problem of Billera and Sturmfels. The problem is one of discrete geometry and topology, and asks about the topology of the set of subdivisions of a certain kind of a convex polytope. Along with a discussion of most of the known results, we survey the motivation for the problem and its relation to triangulations, zonotopal tilings, monotone paths in linear programming, oriented matroid Grassmannians, singularities, and homotopy theory. Included are several open questions and problems.
منابع مشابه
On Some Instances of the Generalized Baues Problem
We present an approach applicable to certain instances of the generalized Baues problem of Billera, Kapranov, and Sturmfels. This approach involves two applications of Alexander/Spanier-Whitehead duality. We use this to show that the generalized Baues problem has a positive answer for the surjective map of cyclic polytopes C (n; d) ! C (n; 2) if n < 2d + 2 and d 9.
متن کاملThe Generalized Baues Problem for Cyclic Polytopes II Preprint SC 98-43 (Januar 1999) THE GENERALIZED BAUES PROBLEM FOR CYCLIC POLYTOPES II
Given an affine surjection of polytopes : P ! Q, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of Q which are induced by the map has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes : C(n; ...
متن کاملProjections of Polytopes on the Plane and the Generalized Baues Problem
Given an affine projection π : P → Q of a d-polytope P onto a polygon Q, it is proved that the poset of proper polytopal subdivisions of Q which are induced by π has the homotopy type of a sphere of dimension d− 3 if π maps all vertices of P into the boundary of Q. This result, originally conjectured by Reiner, is an analogue of a result of Billera, Kapranov and Sturmfels on cellular strings on...
متن کاملOn the Baues Conjecture in Corank 3
A special case of the Generalized Baues Conjecture states that the order complex of the Baues poset of an acyclic vector connguration A (the Baues complex of A) is homotopy equivalent to a sphere of dimension equal to the corank of A minus one. The Baues poset of A is the set of proper polyhedral subdivisions of A ordered by reenement. Recently, Santos has found a counterexample in corank 317 t...
متن کاملOn Subdivision Posets of Cyclic Polytopes
There are two related poset structures, the higher Stasheff-Tamari orders, on the set of all triangulations of the cyclic d polytope with n vertices. In this paper it is shown that both of them have the homotopy type of a sphere of dimension n d 3. Moreover, we resolve positively a new special case of the Generalized Baues Problem: The Baues poset of all polytopal decompositions of a cyclic pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998